
Public

SMART CONTRACT AUDIT REPORT

for

NFT Protocol

Prepared By: Yiqun Chen

PeckShield
September 10, 2021

1/21 PeckShield Audit Report #: 2021-169

sxwang@peckshield.com

Public

Document Properties

Client NFT Protocol
Title Smart Contract Audit Report
Target NFTProtocolDEX
Version 1.0
Author Xiaotao Wu
Auditors Xiaotao Wu, Xuxian Jiang
Reviewed by Yiqun Chen
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 September 10, 2021 Xiaotao Wu Final Release
1.0-rc1 June 25, 2021 Xiaotao Wu Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Yiqun Chen
Phone +86 183 5897 7782
Email contact@peckshield.com

2/21 PeckShield Audit Report #: 2021-169

Public

Contents

1 Introduction 4
1.1 About NFT Protocol . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 9

2 Findings 10
2.1 Summary . 10
2.2 Key Findings . 11

3 Detailed Results 12
3.1 Reentrancy Risks in make()/take() . 12
3.2 Accommodation Of Possible Non-Compliant ERC20 Tokens 14
3.3 Potential Avoidance of Fee Charge in fees() . 15
3.4 Assumed Trust on Admin Keys . 16
3.5 Improved Ether Transfer . 17

4 Conclusion 19

References 20

3/21 PeckShield Audit Report #: 2021-169

Public

1 | Introduction

Given the opportunity to review the source code of the NFT Protocol DEX smart contract, we outline
in the report our systematic approach to evaluate potential security issues in the smart contract
implementation, expose possible semantic inconsistencies between smart contract code and design
document, and provide additional suggestions or recommendations for improvement. Our results
show that the given version of smart contracts can be further improved due to the presence of
several issues related to either security or performance. This document outlines our audit results.

1.1 About NFT Protocol

NFT Protocol consists of decentralized exchange infrastructure supporting the non-fungible token (NFT
) asset class. NFTs serve to represent and constitute ownership of both digital and physical assets
such as digital art, in-game assets, physical art, real estate, sneakers, etc. NFT Protocol’s robust
and all-encompassing infrastructure is intended to serve all of the needs of the NFT asset class and
adapt to the evolving needs of the NFT community. The NFT Protocol organization is decentralized
and invites collaboration from developers, entrepreneurs, and enthusiasts throughout the NFT sector.

The basic information of NFTProtocolDEX is as follows:

Table 1.1: Basic Information of NFTProtocolDEX

Item Description
Name NFT Protocol
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report September 10, 2021

In the following, we show the Git repositories of reviewed files and the commit hash values used
in this audit.

• https://github.com/nftprotocol/nft-dex-audit.git (fc824b8)

4/21 PeckShield Audit Report #: 2021-169

Public

And here are the commit IDs after all fixes for the issues found in the audit have been checked
in:

• https://github.com/nftprotocol/nft-dex-audit.git (24949c8)

1.2 About PeckShield

PeckShield Inc. [11] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa

ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [10]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

5/21 PeckShield Audit Report #: 2021-169

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full Audit Checklist

Category Checklist Items

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries

(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow

Kill-Switch Mechanism
Operation Trails & Event Generation

ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/21 PeckShield Audit Report #: 2021-169

Public

To evaluate the risk, we go through a checklist of items and each would be labeled with a
severity category. For one check item, if our tool or analysis does not identify any issue, the contract
is considered safe regarding the check item. For any discovered issue, we might further deploy
contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [9], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

7/21 PeckShield Audit Report #: 2021-169

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/21 PeckShield Audit Report #: 2021-169

Public

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

9/21 PeckShield Audit Report #: 2021-169

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the NFT Protocol DEX protocol.
During the first phase of our audit, we study the smart contract source code and run our in-house
static code analyzer through the codebase. The purpose here is to statically identify known coding
bugs, and then manually verify (reject or confirm) issues reported by our tool. We further manually
review business logic, examine system operations, and place DeFi-related aspects under scrutiny to
uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 2

Low 2

Informational 1

Total 5

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

10/21 PeckShield Audit Report #: 2021-169

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 2 medium-severity
vulnerabilities, 2 low-severity vulnerabilities, and 1 informational recommendation.

Table 2.1: Key NFTProtocolDEX Audit Findings

ID Severity Title Category Status
PVE-001 Medium Reentrancy Risks in make()/take() Time and State Fixed
PVE-002 Medium Accommodation Of Possible Non-

Compliant ERC20 Tokens
Coding Practices Fixed

PVE-003 Low Potential Avoidance of Fee Charge in
fees()

Coding Practices Confirmed

PVE-004 Low Assumed Trust on Admin Keys Security Features Confirmed
PVE-005 Informational Improved Ether Transfer Business Logics Fixed

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

11/21 PeckShield Audit Report #: 2021-169

Public

3 | Detailed Results

3.1 Reentrancy Risks in make()/take()

• ID: PVE-001

• Severity: Medium

• Likelihood: Low

• Impact: Low

• Target: NFTProtocolDEX

• Category: Time and State [8]

• CWE subcategory: CWE-841 [5]

Description

In the NFTProtocolDEX contract, the make() function allows a maker to transfer a list of assets to the
DEX for exchanging while the take() function allows a taker to transfer a list of expected assets to the
maker’s account in exchange for the maker’s assets (that currently reside within the DEX contract),
which are transferred to the taker’s account.

While reviewing the make/take mechanism, we notice there are several occasions with the po-
tential re-entrancy risks. Using the make() as an example, this function will externally call a token
contract to transfer assets into the DEX. However, the invocation of an external contract requires extra
care in avoiding the re-entrancy risk. The problem is essentially caused by doing transferAssetIn()

(line 176) inside the make() call due to the support of ERC1155 (or similar tokens which support a
callback mechanism). In this particular case, if the external contract has certain hidden logic, we
may run into risk of having a re-entrancy via other public methods.

152 function make(
153 Component [] calldata _make ,
154 Component [] calldata _take ,
155 address [] calldata _whitelist
156) external payable {
157 require (!locked , "DEX shut down");
158
159 // Prohibit multisig from making swap to maintain correct users balances
160 require(msg.sender != msig , "Multisig cannot make swap");
161
162 // Create swap entry and transfer assets to DEX

12/21 PeckShield Audit Report #: 2021-169

Public

163 swap[swapsEnd].id = swapsEnd;
164 swap[swapsEnd]. makerAddress = msg.sender;
165 require(_take.length > 0, "Empty taker array");
166 for (uint256 i = 0; i < _take.length; i++) {
167 checkValues(_take[i]);
168 swap[swapsEnd]. components[RIGHT].push(_take[i]);
169 }
170
171 // Transfer in maker assets
172 uint256 totalETH;
173 require(_make.length > 0, "Empty maker array");
174 for (uint256 i = 0; i < _make.length; i++) {
175 swap[swapsEnd]. components[LEFT].push(_make[i]);
176 totalETH += transferAssetIn(_make[i]);
177 }
178 require(msg.value >= totalETH , "Insufficient ETH");
179
180 // Add eth to users deposited total eth balance
181 usersEthBalance += msg.value;
182
183 // Credit excess eth back to the sender
184 if (msg.value > totalETH) {
185 pendingWithdrawals[msg.sender] += msg.value - totalETH;
186 }
187
188 // Initialize whitelist mapping for this swap
189 swap[swapsEnd]. whitelistEnabled = _whitelist.length > 0;
190 for (uint256 i = 0; i < _whitelist.length; i++) {
191 list[swapsEnd][_whitelist[i]] = true;
192 }
193
194 // Issue event
195 emit MakeSwap(_make , _take , msg.sender , _whitelist , swapsEnd);
196
197 // Add swap
198 swapsEnd += 1;
199 }

Listing 3.1: NFTProtocolDEX::make()

Another similar violation can be found in the take() routine within the same contract.

Recommendation Apply necessary reentrancy prevention by making use of the common
nonReentrant modifier.

Status The issue has been fixed by this commit: 26fe96d.

13/21 PeckShield Audit Report #: 2021-169

https://github.com/nftprotocol/nft-dex-audit/commit/26fe96d

Public

3.2 Accommodation Of Possible Non-Compliant ERC20 Tokens

• ID: PVE-002

• Severity: Medium

• Likelihood: Medium

• Impact:Medium

• Target: NFTProtocolDEX

• Category: Coding Practices [7]

• CWE subcategory: CWE-1109 [3]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow the
specification or have additional functionalities beyond the specification. In this section, we examine
the transfer() routine and possible idiosyncrasies from current widely-used token contracts.

In particular, we use the popular token, i.e., ZRX, as our example. We show the related code
snippet below. On its entry of transfer(), there is a check, i.e., if (balances[msg.sender] >= _value

&& balances[_to] + _value >= balances[_to]). If the check fails, it returns false. However, the
transaction still proceeds successfully without being reverted. This is not compliant with the ERC20
standard and may cause issues if not handled properly. Specifically, the ERC20 standard specifies the
following: “Transfers _value amount of tokens to address _to, and MUST fire the Transfer event.
The function SHOULD throw if the message caller’s account balance does not have enough tokens
to spend.”

64 function transfer(address _to , uint _value) returns (bool) {
65 // Default assumes totalSupply can’t be over max (2^256 - 1).
66 if (balances[msg.sender] >= _value && balances[_to] + _value >= balances[_to]) {
67 balances[msg.sender] -= _value;
68 balances[_to] += _value;
69 Transfer(msg.sender , _to , _value);
70 return true;
71 } else { return false; }
72 }
73
74 function transferFrom(address _from , address _to , uint _value) returns (bool) {
75 if (balances[_from] >= _value && allowed[_from][msg.sender] >= _value &&

balances[_to] + _value >= balances[_to]) {
76 balances[_to] += _value;
77 balances[_from] -= _value;
78 allowed[_from][msg.sender] -= _value;
79 Transfer(_from , _to , _value);
80 return true;
81 } else { return false; }
82 }

Listing 3.2: ZRX.sol

14/21 PeckShield Audit Report #: 2021-169

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20

Public

Because of that, a normal call to transfer() is suggested to use the safe version, i.e., safeTransfer
(), In essence, it is a wrapper around ERC20 operations that may either throw on failure or return
false without reverts. Moreover, the safe version also supports tokens that return no value (and
instead revert or throw on failure). Note that non-reverting calls are assumed to be successful.
Similarly, there is a safe version of transferFrom() as well, i.e., safeTransferFrom()

In the following, we show the transfer20() routines in the NFTProtocolDEX contract. If the ZRX token
is supported as the underlying IERC20(_comp.tokenAddress), the unsafe version of coin.transferFrom

(_from, _to, amount) (line 457) may return false in the ZRX token contract’s transferFrom() imple-
mentation (but the IERC20 interface expects a revert)! Thus, the contract has vulnerabilities against
fake transferFrom attacks.

449 function transfer20(
450 Component memory _comp ,
451 address _from ,
452 address _to
453) internal {
454 checkSingleAmount(_comp);
455 IERC20 coin = IERC20(_comp.tokenAddress);
456 uint256 amount = _comp.amounts [0];
457 coin.transferFrom(_from , _to , amount);
458 }

Listing 3.3: NFTProtocolDEX::transfer20()

Recommendation Accommodate the above-mentioned idiosyncrasy about ERC20-related
transferFrom().

Status The issue has been fixed by this commit: 26fe96d.

3.3 Potential Avoidance of Fee Charge in fees()

• ID: PVE-003

• Severity: Low

• Likelihood: Medium

• Impact: Medium

• Target: NFTProtocolDEX

• Category: Coding Practices [7]

• CWE subcategory: CWE-1109 [2]

Description

The NFTProtocolDEX smart contract implements a function take() that allows contract to charge a
certain amount of ether as trade fee from the taker. The calculation of trade fee amount depends
on the balance of the taker’s ERC20 NFT Protocol tokens. If the balance of the taker is greater than

15/21 PeckShield Audit Report #: 2021-169

https://github.com/nftprotocol/nft-dex-audit/commit/26fe96d

Public

or equal to fehi, the trade fee amount will be 0. This can be exploited by trade taker to avoid trade
fee.

To elaborate, we show below the fees() function. To avoid any fee charge, a trade taker may
flash borrow enough ERC20 NFT Protocol tokens before calling take() and repay the borrowed tokens
after calling take().

309 function fees() public view returns (uint256) {
310 uint256 balance = IERC20(nftProtocolTokenAddress).balanceOf(msg.sender);
311 if (balance >= fehi) {
312 return 0;
313 }
314 if (balance < felo) {
315 return flat;
316 }
317 // Take 10% off as soon as feeBypassLow is reached
318 uint256 startFee = (flat * 9) / 10;
319 return startFee - (startFee * (balance - felo)) / (fehi - felo);
320 }

Listing 3.4: NFTProtocolDEX::fees()

Recommendation Optimize the fee charge mechanism used in the fees() function.

Status The issue has been confirmed. NFT Protocol team are aware that this is an issue at the
moment, however, will not be addressing it for this release. The next version of the contract will have
a proper staking mechanism to prevent accounts from taking advantage through flash borrowing.

3.4 Assumed Trust on Admin Keys

• ID: PVE-004

• Severity: Low

• Likelihood: Low

• Impact: High

• Target: NFTProtocolDEX

• Category: Security Features [6]

• CWE subcategory: CWE-287 [4]

Description

In the NFTProtocolDEX contract, there is a special administrative account, i.e., msig. This msig account
plays a critical role in governing and regulating the entire operation and maintenance. We examine
closely the NFTProtocolDEX contract and identify one trust issue on this msig account.

To elaborate, we show below the vote() function. We note that the vote() function allows for
the msig to update trade fee for trade taker.

327 function vote(
328 uint256 _flatFee ,

16/21 PeckShield Audit Report #: 2021-169

Public

329 uint256 _feeBypassLow ,
330 uint256 _feeBypassHigh
331) external {
332 require(msg.sender == msig , "Unauthorized");
333 require(_feeBypassLow <= _feeBypassHigh , "bypassLow must be <= bypassHigh");
334 flat = _flatFee;
335 felo = _feeBypassLow;
336 fehi = _feeBypassHigh;
337 emit Vote(_flatFee , _feeBypassLow , _feeBypassHigh);
338 }

Listing 3.5: NFTProtocolDEX::vote()

We understand the need of the privileged functions for contract operation, but at the same time
the extra power to the msig may also be a counter-party risk to the contract users. Therefore, we
list this concern as an issue here from the audit perspective and highly recommend making these
privileges explicit or raising necessary awareness among contract users.

Recommendation Make the list of extra privileges granted to msig explicit to NFTProtocolDEX

users.

Status The issue has been confirmed. The msig account was introduced to facilitate administra-
tive tasks, e.g., withdrawing and updating trading fees. NFT Protocol team therefore do not interpret
this issue as a concern per se. NFT Protocol team are aware of the risk of msig getting compomised
and NFT Protocol losing control over fees.

3.5 Improved Ether Transfer

• ID: PVE-005

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: NFTProtocolDEX

• Category: Business Logics [8]

• CWE subcategory: CWE-841 [5]

Description

The NFTProtocolDEX contract provides the pull() function for users to withdraw Ether funds from
the contract. As for the case of transferring Ether, the Solidity function, transfer(), is used (line
296 in the code snippet below). However, as described in [1], when the recipient happens to be a
contract which implements a callback function containing EVM instructions such as SLOAD, the 2300
gas supplied with transfer() might be insufficient, leading to an out-of-gas error.

289 function pull() external {
290 uint256 amount = pendingWithdrawals[msg.sender];

17/21 PeckShield Audit Report #: 2021-169

Public

291 pendingWithdrawals[msg.sender] = 0;
292 if (msg.sender != msig) {
293 // Underflow should never happen , and is handled by SafeMath if it does
294 usersEthBalance -= amount;
295 }
296 payable(msg.sender).transfer(amount);
297 }

Listing 3.6: NFTProtocolDEX::pull()

As suggested in [1], we suggest to stop using Solidity’s transfer() as well. Note that the use of
call() leads to side effects such as reentrancy attacks and gas token vulnerabilities.

Recommendation Replace transfer() with call().

Status The issue has been fixed by this commit: 26fe96d.

18/21 PeckShield Audit Report #: 2021-169

https://github.com/nftprotocol/nft-dex-audit/commit/26fe96d

Public

4 | Conclusion

In this audit, we have analyzed the NFT Protocol DEX design and implementation. The system presents
a unique, robust offering as a decentralized exchange infrastructure supporting the non-fungible token
(NFT) asset class. The current code base is well structured and neatly organized. Those identified
issues are promptly confirmed and fixed.

Moreover, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

19/21 PeckShield Audit Report #: 2021-169

Public

References

[1] Steve Marx. Stop Using Solidity’s transfer() Now. https://diligence.consensys.net/blog/2019/

09/stop-using-soliditys-transfer-now/.

[2] MITRE. CWE-1109: Use of Same Variable for Multiple Purposes. https://cwe.mitre.org/data/

definitions/1109.html.

[3] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[4] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[5] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[6] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[7] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[8] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[9] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

20/21 PeckShield Audit Report #: 2021-169

https://diligence.consensys.net/blog/2019/09/stop-using-soliditys-transfer-now/
https://diligence.consensys.net/blog/2019/09/stop-using-soliditys-transfer-now/
https://cwe.mitre.org/data/definitions/1109.html
https://cwe.mitre.org/data/definitions/1109.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html

Public

[10] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[11] PeckShield. PeckShield Inc. https://www.peckshield.com.

21/21 PeckShield Audit Report #: 2021-169

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About NFT Protocol
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Reentrancy Risks in make()/take()
	Accommodation Of Possible Non-Compliant ERC20 Tokens
	Potential Avoidance of Fee Charge in fees()
	Assumed Trust on Admin Keys
	Improved Ether Transfer

	Conclusion
	References

